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1. INTRODUCTION.
Distributed databases have become a very active research area. Within this research area,

the transaction processing problem has been getting considerable attention. A transaction is
(informally) a user application request or program that has been submitted to the distributed
database. The distributed database system must efficiently process these transactions in a way
which does not violate the data integrity or consistency constraints [Eswa76].

For example, suppose that data on a person's salary is duplicated at two nodes (sites) in
the system. Since the two data items represent the same person's salary, the two items should
have the same value. However, if two transactions attempt to modify the salary concurrently, it
is possible for the two data items to end up with different values. A transaction processing
algorithm, or concurrency control mechanism, is needed to prevent these types of problems. A
large number of such algorithms for distributed databases have been proposed [Alsb76, Elli07,
Gray77, Thom79J.

A read-only transaction or query is a transaction which does not modify the distributed
database. For example, a transaction to check the balance of a given checking account in a
bank is a query. Since queries are still transactions, they can be processed using the algorithms
for arbitrary transactions. However, it is also possible to use special processing algorithms for
queries in order to improve efficiency. With this approach, the specialized algorithm can take
advantage of the knowledge that no data will be modified by the transaction. In this paper, we
will explore these ideas on queries, we will study the requirements for these special transac-
tions, and we will analyze the types of algorithms needed for processing them. The emphasis
of this paper will be on discussing the issues and available design choices instead of on the
presentation of a particular approach.

The idea of using the "type" of a transaction in order to improve efficiency is not new
[Bern78]. However, this has been a somewhat controversial idea because it is not clear if it is
possible to know beforehand all of the transaction types that will run on a distributed database
system. Nevertheless, we believe that the transaction "type" idea does have great potential in
the special case where there are only two types: read-only transactions and update (i.e. not
read-only) transactions. The reasons for this are that (1) we believe that there will be a high
percentage of read-only transactions in most systems, and (2) we believe that it will be fairly
easy to distinguish a read-only transaction from an update transaction.

In this paper we will avoid two important issues of transaction processing: directory
management and transaction optimization. That is, we will not consider how a transaction
locates the data it needs, nor will we consider how a transaction decides where and in what
order to read the data it needs. We will assume that by the time that a user transaction is given
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to the transaction processing algorithm, the user transaction has been translated into a series of
actions which reference particular data values located at particular nodes.

In order to simplify the presentation, we will make another important assumption about
the distributed database system. We assume that no failures occur in the system. This is a rea-
sonable assumption because crash recovery for queries is straightforward. Since a query does
not modify the data, there is no recovery problem with an unfinished read-only transaction.

In the following section we will present the basic concepts that are needed for this paper.
Then in section 3, we will study read-only transactions and the various user requirements that
they may have. In section 4 we will discuss how the different classes of queries can be pro-
cessed efficiently. Finally, some conclusions from this study are presented in section 5.

2. BASIC CONCEPTS.
In this section, we will review some of the basic concepts that will be useful in our study

of queries. Many of the concepts in this section are from [Eswa76], adapted to a distributed
database system. (The concept of consistency for a distributed database is the same as for a
centralized database. However, the concurrency control mechanisms for maintaining con-
sistency in a distributed database differ significantly from those in a centralized database.)

A distributed database is a collection of named items. Each item has a name and between
1 and n values associated with it, where n is the number of nodes in the system. Each value
for a given item is stored at a different node of the system. In addition, each item i has associ-
ated with it a set S(i). Set S(i) is the set of nodes which have a value for item i stored in
them. We assume that all sets S(i) are not empty, and at most have all n nodes in them. We
use the notation d[i,xJ to represent the value of the item named i at node x. For nodes y not
in S(i), d[i,y] is undefined. The values for a given item i at different nodes should be the
same (i.e., d[i,x] should equal d[i,z] for all nodes x,z in S(i)). However, due to the updating
activity, the values may be temporarily different.

Figure I shows a sample distributed database. There are four items in this distributed
database: item "deposits" represents the total deposits made to a certain bank account, item
"withdrawals" represents the total withdrawals from the same account, item "balance"
represents the balance of the account, while item "name" represents the name of the person
who owns the account. As can be seen in figure 1, the balance of the account is reported to be
60 dollars at nodes I and 2. That is, dlbalance,l] - d[balance,21 - 60. Since node 3 does not
have a value for item "balance", d~balance,31 is undefined.

In addition to items and values, a distributed database has a collection of consistency con-
straints. A consistency constraint is a predicate defined on the database which describes the
relationships that must hold among the items and their values. For example, the distributed
database of figure I my have the consistency constraint "deposits - withdrawals - balance".
In addition to this type of constraint, distributed databases always have the constraint that the
values of an item should be equal. We call this constraint the implicit constraint simply to
differentiate it from the other user dependent constraints.

We say that a distributed database is consistent (or is in a consistent state) if all the con-
sistency constraints are satisfied by the data values.

We can use the d[i,x] notation to express the consistency constraints. For example, the
constraint "deposits-withdrawals - balance" becomes "d[deposits,!] - d[withdrawals, I I -
dibalance,l)", and "d[deposits,21 - d[withdrawals,21 - d(balance,21". Notice that there is
no constraint at node 3 because two of the values involved are not defined there. The implicit
constraint for the example becomes "d~deposits,11 - d[deposits,21", "d[withdrawals, I -
d [withdrawals,21 - d [withdrawals,31", and "d [balance, II - d (balance,21".

Operations on the data are grouped into transactions. Each transaction T is a sequence of
actions which preserve consistency. One way of representing an action is by a triplet
(T, a, dAi,x]) where T is the name of the transaction which performs the action, a is the
action type (e.g., read, write), and d(i, xI is the data value which is referenced by the action
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(d[i,x] must be defined). Notice the difference between T, the name of the transaction, and
T, the transaction itself. All transactions must preserve consistency. That is, if a transaction is
run on a consistent distributed database and without interference from other transactions, then
the transaction should leave the distributed database in a consistent state.

Figure 2 shows a transaction T, that registers a 5 dollar deposit into the account of figure
1. The transaction is presented in an informal notation which describes the actual operations
performed. The formal notation for T, as a sequence of actions in also shown in figure 2.
Notice that the formal representation of T, does not specify that the value that is written into
dlbalance,l] is 5 dollars more than its old value, nor that the values written into d(balance,1]
and dlbalance,21 are the same. However, as long as we know that T, preserves consistency,
the information given in figure 2 is sufficient to study the potential conflicts of T, with other
transactions.

A schedule S of a set of transactions TI, 72. .. T, represents a particular order in
which the actions of the transactions were performed in the system. A schedule is also a
sequence of actions. The actions of schedule S are simply the actions of the transactions TI,
T2. . . 7',, interleaved in a way which preserves the relative order of the original actions.
That is, if (T, a,, di 1 ,x,]) preceded (T, a2, di 2 ,x2J) in T (for Ij <m), then
(T, a1 , d[i,x u) must precede (T, a2, di 2,x2 ) in S. Figure 3 shows a schedule for transac-
tions T, and T2, where transaction T, is given in figure 2, and transaction T2 is a similar tran-
saction which withdraws 10 dollars from the same account. The informal notation for S is also
given.

Some schedules have undesirable effects. For example, if the schedule named S in figure
3 is run on a consistent distributed database, then the distributed database will be left in an
inconsistent state. (Try it). Hence, it is important to discover which schedules are "good" and
which have undesirable effects. One set of "good" schedules are those schedules which are
serial or which are equivalent to serial. Serial schedules are ones where transactions are per-
formed one at a time, and are clearly "good". A schedule which is -equivalent to a serial
schedule is one which has the same effect on the data as some serial schedule. We will call this
set of "good" schedules consistent schedules. The following definitions and theorem [from
Eswa76I state these concepts more precisely:

Ddnition I. Let T be the set of all transaction names in a schedule named S, and let V be
the set of all defined item values d~i,x] in the distributed database. The dependency relation
induced by schedule S,dep(S), is a ternary relation on Tx Vx T defined by (T t , V, T2)Edep(S)
if and only if for some i < j

S- ( .... (TI, a,, v) .. , (T 2, ,V) .... )
and a, or a, is a write type action and there is no k such that

i< k <j and
vA - v and
aA - write.

The last part of the definition specifies that there should be no write action on item value v
between the (TI,a,,v) action and the (T 2,a,,V) action. (Notice that item values d~i,x] play the
role of the entities of (Eswa761).
Deilltion 2. Let S, and S2 be two schedules for transactions T, T .. , T,,. S, is equivalent
to S 2 iff dep(S I) - dep(S 2).
Defintlem 3. The binary relation "<" on the set of transactions of a schedule S is defined by:

T, < T2 fJ (TI, v, T2)Edep(S) for some item value v.
Themem I. A schedule S is consistent (i.e., equivalent to a serial schedule) iff the binary rela-
tion < for S is an acyclic relation.

To illustrate the definition of consistent schedule, consider once more the schedule S of
figure 3. Here, (TI, d~balance,lI, T2)Edep(S) because of the actions in lines 4 and 6.
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Similarly, (T2, dlbalance,21, TI)Edep(S) because of the actions in lines 10 and 11. Therefore,
T, < T2 and T2 < T, and the < relation is not acyclic. So, S is inconsistent.

As we will see later on in this paper, there are some schedules which some users might
consider "good" which are not "consistent" by the given definitions. However, all consistent
schedules are "good" in the sense that they do not cause any undesirable effects or violate the
distributed database consistency. Furthermore, it is relatively easy (with the theorem) to check
if a schedule is consistent, so most researchers have chosen consistent schedules as their
definition of "good" schedules. In this paper, we will also use this definition.

A transaction processing algorithm should process transactions in such a way that the result-
ing schedule is consistent. A few of these algorithms will be described in section 4.1.

3. READ-ONLY TRANSACTIONS.
A read-only transaction or query is a transaction without any write actions. Such a tran-

saction simply reads data from the distributed database and presents the values obtained to a
user of the system. The user cannot then make an update to the distributed database based on
the data obtained from the query. if the user wishes to submit such an update, the update
transaction must first read the data again to check if the data has changed.

We believe that in many distributed database applications queries represent a very
significant proportion of the total transactions submitted. Hence it is important to understand
what classes of queries exist as well as how they can be processed efficiently.

3.1 Requirements for Queries.

Users who issue queries may have varying requirements for the transactions. These user
requirements can be divided into two independent classes: the consistency and the currency
requirements.

The consistency requirements specify the "degree" of consistency needed by the read-
only transaction. ([Gray76] discusses degrees of consistency for arbitrary transactions; here we
will define different but related degrees for queries). A query may have strong, weak or no
consistency requirements. If a query Q, has no consistency requirement, then Q, may read
data which is inconsistent, if a query Q2 requires weak consistency, then Q2 must obtain a con-
sistent view of the data. This means that all the consistency constraints that can be fully
evaluated with the data read by Q2 must be true. If a query Q3 requires strong consistency, then
the schedule of all the update transactions (i.e. not read-only) together with all other strong
consistency queries must be consistent. Notice that Q3 also obtains a consistent view of the
data. (Since a consistent schedule is equivalent to some serial schedule, all transactions in the
schedule read consistent data). Thus, all queries with the strong consistency requirement also
satisfy the weak consistency requirement. In section 4.1.2 we will see that queries with the
weak requirement do not necessarily satisfy the strong requirement. The example in that sec-
tion will also clarify the difference between the weak and strong requirements.

The currency requirement of a query specifies what update transactions should be
reflected by the data read. There are several ways in which the currency requirement can be
stated; here we will discuss three common ways.
(I) t-vintage requirement. A query Q4 can require data as it existed at a given (previous) time

t. This means that the data read by Q4 must reflect the modifications of all update tran-
sactions "committed" in the distributed system before time t, and must not reflect
modification due to any update transactions "committed" after time t. Intuitively, the
commit time of an update transaction T is the time when any data modification produced
by T first becomes available anywhere in the system. In many cases, the time of the first
write action of T at any node would be the commit time of T. However, if the data writ-
ten by T is protected by locks or any such mechanism which makes the new value written
inaccessible, then the commit point is not reached until the new values actually become
accessible to other transactions. (Here, as in the rest of the paper, we use the concept of

' 1. . . . .,
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time in an intuitive fashion. These ideas could be formalized using the concepts in
[Lamp7S]). We will call transactions like R 4 t-vintage queries.

(2) t-bound requirement. A query Q5 can request that the data it reads at least reflect all
update transactions committed before time i. The data may or may not reflect any tran-
sactions committed after time t. We will call transactions like Q5 t-bound queries. A
special case occurs when t is the current time (i.e., the time when Qs is submitted). In
this case, Q5 requires the latest or most up-to-date data available. Such transactions will
be called latest-bound queries.

(3) No currency requirement. A query Q6 can have no currency requirements. This means
that the data read by Q6 can reflect any set of update transactions.

3.2 An Example.
Let us illustrate the consistency and currency requirements with a simple example. Con-

sider once again the distributed database of figure I but for simplicity, let us assume that node
3 does not exist. Suppose that there are 3 update transactions T1, T2 and T3. Transactions T,
(shown in figure 2) is submitted at time tj and records a 5 dollar deposit to the account. Tran-
saction T, reads the total deposits and balance at node 1, updates these values at node 1, and
sends a message M, to node 2 indicating what these changes are. The message in this case
would be "d[deposits,2J .- 105; d[balance,21 -- 65" because the deposits and balance read at
node I were 100 and 60 respectively. Next, transaction T2 is submitted at time t2 (t 2 > ti) and
records a 10 dollar withdrawal. Transaction T 2 reads the total withdrawals and balance at node
I (which now reflect TI), updates these values at node 1, and sends a message M 2 to node 2.
Since the withdrawals and balance at node 1 were 40 and 65 respectively, M 2 is
"d[withdrawals,21 - 50; d[balance,2] - 55". Next, transaction T3 is submitted at time
13 (3 > t2) and records a 100 dollar deposit. After reading and updating node 1, T 3 sends the
message M 3 to node 2: "d[deposits,21 -- 205; d(balance,21 - 155".

Figure 4 shows the situation at this point. Let us assume that messages M 1, M 2, and M 3
can arrive in any order at node 2. Let us define Mi (d) to be the resulting item values at node
2 after message M, is processed there, given that d are the previous item values. For example,
if do are the initial values at node 2 (see figure 1), then M1(d0 ) are the values
dldeposits,21 - 105, d[withdrawals,21 - 40 and d[balance,21 - 65. Notice that if the mes-
sages are processed out of order at node 2, then consistency is violated. For example,
M(M 2 (do)) is inconsistent because the resulting deposits minus the resulting withdrawals is
not equal to the resulting balance.

Next, a query Q arrives at node 2 at time 14 (14 > t3> 12 > t). Query Q requests the
values of all three items at node 2. If Q is a weak consistency query (i.e., a query with a weak
consistency requirement), then Q can only be allowed to read do (the initial values), M(do),
M 2(M 1 (do)) or M3(M 2(M 1 (do))). If Q is a strong consistency query, then it can only read
those same consistent values. However, if Q has no consistency requirement, it can read any-
thing: do, M,(do), M,(M 2(do)), M 2 (M1 (do)), and so on.

If query Q is t-vintage where 12< t< t3, then it should read data that reflects only those
transactions submitted before time t, that is T, and T2. Hence, in this case, Q can read
M 2(M,(do)) or M,(M 2(do)) only. If in addition to being t-vintage, Q is a weak consistency
(or strong consistency) query, then only the values M 2(M (do)) would be acceptable. If Q is a
t-bound query with 12< 1< 13, then Q can read M 2(Ml(do)), M 1(M 2(do)), M 3 (M 2 (Ml(do))),
M 2(M 1(M . (do))), and any other data which reflects MI, M2, M 3 in any order. However, nei-
ther M 3(M 2 (do)) nor MI(M 3 (do)) would be acceptable to this t-bound query. If in addition to
being t-bound, Q is a weak consistency ( or strong consistency) query, then only the values
M 2(M 1 (do)) or M 3 (M 2(MI(do))) would be acceptable to Q. If Q is a latest bound (i.e., t4-
bound) query, then any data which reflects M1, M2, M3 in any order is acceptable, but if Q is
also weak (or strong) consistent, then only M 3(M 2(MI(do))) is acceptable. Finally, if Q has
no currency requirement, then it can read anything: do, MI (do),M 2(do),
M 2(M 1(do)),M 1 (M 2(do)), etc.
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In this example we have not described how the query Q could go about reading the data it
needs. (We did not even consider reading data at node 1.) The example simply discussed what
data would be acceptable to Q depending on its user defined consistency and currency require-
ments. The algorithms for processing the different types of queries will be discussed in section
4. The example did not illustrate the difference between weak consistency and strong con-
sistency queries. An example which illustrates this difference will be given in section 4.1.2.

3.3 Why Different Read-only Transaction Types are Needed.

In this section we will discuss why the different query classes are needed. For instance, it
might seem that a query with no currency or consistency requirements is not very useful
because, as the previous example illustrated, it may produce data which " does not make much
sense". On the other hand, queries with no requirements, which we will call free queries, are
extremely simple and efficient to process. All that has to be done to process free queries is to
find the nearest copy of the requested data and read it, without worrying about the consistency
of the data or how old the data is. So, in many applications, users may be willing to sacrifice
consistency and currency for efficiency. Furthermore, in a well designed distributed database
system, free queries should produce results which are not too old. For example, a
warehousenanager might want a rough idea of where the inventory stands. The manager does
not really care if the data obtained is 15 or 30 minutes old. The manager might not mind that
the total number of parts reported does not exactly match the sum of the itemized entries in
the report obtained (which may be a consistency violation). As another example, consider a
free query which computes an average salary for a large set of employees. The result might not
be accurate if some of the salaries are being updated during the long period that the averaging
query is running. But the user might decide that such occasional conflicts will not alter the
average significantly. Furthermore, not running the averaging query as a free query will pro-
duce long delays in other transactions that access the salary data.

Another case where free queries are valuable is in one item queries. A query that only
reads one item value will always give a consistent view of the data. (The last update transaction
that wrote a value into the item must have made sure that the written value satisfied any con-
sistency constraints dealing exclusively with the item.) Therefore, the simple algorithm for pro-
cessing free queries can be used for one item queries and the result will always be consistent.
In many systems, one item queries are common and considerable effort can be saved if we use
an efficient method like the free query mechanism for performing these queries.

Clearly, not all queries in a system can be free. In some queries, a consistent view of the
data is required. For instance, the checking account monthly statement that is sent to a bank
customer must be consistent. (E.g., the sum of the cashed checks should equal the total debits
entry). Usually, the query to print the monthly statement does not have any currency require-
ments because any checks missed this month will simply be reported next month. (If the
checking account yields an interest, then there may be some currency requirements).

For an example of a t-vintage query, consider the case of a tax auditor examining the
computerized records of a company. The auditor may be interested in looking at the database
as it existed December 31, 1960 at 12:00 midnight. Queries of December 31, 1960, 12:00 mid-
night - vintage will provide the auditor with the desired results. Such queries would probably
be weak (or strong) consistent too. But in some cases, like a one item transaction, no con-
sistency requirement may be necessary.

In some situations it may be necessary to obtain the latest information that is available in
the system. For example, a general who has to decide whether to fire or not a missile at an
incoming airplane will use a latest-bound query to obtain the latest information on the
airplane's position and speed.

To see when a t-bound query with t different from the current time could be used, con-
sider the case of a distributed database node which becomes isolated from the rest of the sys-
tem at time ti because of a communications failure. (True, we have assumed that no failures
occur, but let us make this small exception). In this case, any latest-bound queries submitted
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after time 1j at the isolated node will be delayed until the failure is repaired. (While the node
is isolated, it cannot tell if other update transactions are being processed by the rest of the sys-
tem). Instead of waiting, users may prefer to submit tl-bound queries to at least obtain the
latest data available before the crash.

4. PROCESSING QUERIES.
It is now time to discuss how queries can be processed. The approach we take in this

paper is that queries are processed with a special algorithm which is different from the update
transaction processing algorithm. This way, queries can be processed more efficiently because
the algorithm for processing them can take advantage of the fact that no data will be modified
by these transactions.

In order to use a special query algorithm, we must assume that it is possible to a priori
distinguish queries from the other transactions. This is a reasonable assumption because the
transaction programmer can usually tell if the transaction has no intention of updating the data-
base. Hence, transactions can be marked as read-only from their inception. We will also
assume that the consistency and currency requirements for each query are given when the
query is initiated. If the requirements are unknown, then some standard default requirements
could be made.

Although it is difficult to evaluate the efficiency of query processing algorithms, it is possi-
ble to define one evaluation criterion which is very useful. Suppose that a query Q is submit-
ted at a certain node x (by a user located at node x). We say that query Q is insular if all the
items referenced by Q have values at the node where Q was submitted. Depending on the
consistency and currency requirements of insular query Q, the query processing algorithm may
or may not be able to process Q locally at node x, without the need to communicate or syn-
chronize with other nodes. If an algorithm can process an insular query Q with requirement R
at the node where Q was submitted, we say that this is a R insular algorithm. For example, an
algorithm which can process weak consistency insular queries at the submission node of the
query is a weak consistency insular algorithm. We expect a R insular algorithm to be a consid-
erably superior to one which is not R insular, at least as far as R queries are concerned. Thus,
R insularity is an important characteristic of an algorithm which can be used for comparing and
evaluating query processing algorithms,

At this point it would be nice if we could simply present one query algorithm which is R
insular for all possible requirements R. Unfortunately this is not possible because the query
algorithm is closely related to the algorithm used for processing update transactions. Thus, for
each possible update algorithm, we have to design a different query algorithm. Furthermore,
with some update algorithms it is not possible to have query algorithms with all the desirable
properties. For example, with certain update algorithms it is impossible to process weak or
strong consistency insular queries at their originating node. That is, for those update algo-
rithms there are no weak or strong consistency insular algorithms.

This means that we can also use the R insular property to characterize update algorithms.
We say that an update transaction processing algorithm is R insular if there exists an R insular
query algorithm that can be used with that update algorithm. We consider R insularity an
important feature of update algorithms because efficient query processing hinges on those
features.

In the following section we will present some examples to illustrate some of the concepts
we have defined so far. Then in section 4.2, we will consider the issues involved in processing
non-insular queries. Queries with t-vintage and t-bound requirements will not be covered until
section 4.3.

ZI
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4.1 Examples of R Insular Update Algorithms.
In this section we will present four update algorithms with various interesting R insularity

properties. Recall that an update algorithm is R insular if there exists a query algorithm capa-
ble of locally processing insular queries with requirement R. Since we are interested in insular
queries, let us assume in this section that the data is completely replicated at all nodes of the sys-
tem. That is, assume that all items i have a value d[i,x] at every node x of the system. This
will make all queries insular and will simplify our examples. After the examples, we return to
the general case in order to discuss non-insular queries.

Before starting with the examples, let us point out that the update algorithms we will
present are extremely simple, and possibly not very efficient. The purpose of the examples is
to illustrate how queries can be processed and not how to design efficient update algorithms.
But let us also point out that the algorithms we will show are just simplified versions of some
popular (and more efficient) update algorithms, where both the simple and the original algo-
rithms have the same features with respect to queries.

4.1.1. An Example: The Complete Centralization Algorithm (CCA).
The first sample update processing algorithm is a strong consistency insular one. The

name of the algorithm is the Complete Centralization Algorithm (CCA) (inspired by the pri-
mary site algorithm of [Alsb76J).

In the CCA, a node of the distributed database is selected as the "central" site. This cen-
tral node processes all update transactions one at a time, and sends messages to all other nodes
giving them the new values. We now give a brief description of the CCA. Figure 5 depicts the
steps of the CCA in a 4 node system.
(1) Update transaction T arrives at node x from a user. (Recall that we assume that all data

is replicated at every node in the system)
(2) Node x forwards transaction T to the central node.
(3) When the central node receives T, it places it in a queue. Update transaction T waits in

the queue until its turn to be executed comes up.
(4) When T's turn comes, it is executed at the central node. (At this point, all previous tran-

sactions have completed at all nodes). The item values requested by T are read from the
database at the central node, any necessary computations are carried out, and the new
values are stored in the local database.

(5) "Perform update T" messages are sent out by the central node to all other nodes giving
them the new values that must be stored at each site.

(6) Each node that receives a "perform update T" message stores the new values produced
by T into the database. Then an acknowledgement message is sent back to the central
node.

(7) When the central node receives acknowledgements for the "perform update T" messages
from all the nodes in the system, then it knows that T has completed everywhere. Thus,
the central node gets the next update transaction that is waiting in its queue and processes
it. (See step 4.) (End of CCA.)
The CCA processes update transactions one at a time, without interleaving with other

update transactions. Therefore, any schedule of update transactions produced by the CCA is
serial and hence consistent.

Now suppose that a query Q, which desires a consistent view of the database, arrives at a
node x. Since all items have local values, query Q is insular. Notice that between update tran-
sactions, the distributed database is consistent. Hence, if Q reads its data at node x "between"
update transactions, it will get a consistent view. In other words, node x can process Q by
waiting until the current update transaction (if any) completes at node x, and then by delaying
any actions of the following update transaction until Q completes. (The following transaction
can be delayed by delaying the acknowledgement for the previous one). What we have just
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described is a local processing algorithm for queries. Let us call this algorithm the atomic algo-
rithm (AA) because queries are performed as if they were atomic operations.

The AA gives a consistent view of the data and is therefore a weak consistency insular
query algorithm. As a matter of fact, the AA is also a strong consistency insular algorithm. To
show this, we must show that any schedule produced by the CCA and the AA is consistent
(although this may be obvious to some readers).

Instead of immediately showing that the AA is strong consistency insular, let us briefly
describe another significantly more efficient query processing algorithm which can also be used
for processing strong (and weak) consistency insular queries. After presenting the second algo-
rithm, we will show that both algorithms have the strong consistency insular characteristic.

The local locking algorithm (LLA) uses local locks to guarantee that the local queries do
not conflict with the update transactions. A local lock is assigned to every value d[i,x] at node
x (for all nodes x). Before any transaction (query or update) can reference (i.e. read or write)
an item value, it must request the lock for that value. Once obtained, the lock gives that tran-
saction exclusive access to the value. When the transaction completes at node x (but possibly
not at other nodes), all local locks held by the transaction are released. Other waiting transac-
tions may then be given the newly released locks. Notice that the local lock manager (which is
just the LLA) does not need to communicate with other nodes in order to decide whether to
grant or release a lock. (In the CCA, a node can easily tell which is the last action of an update
transaction at a node. It is the last write of the "perform update" message. In other update
algorithms, it is also possible to identify the last action of a transaction at a node.)

The LLA gives queries a consistent view of the data because whenever a query Q sees the
effects of an update transaction T, then Q sees the complete effects of T1, and also, Q sees the
complete effects of any update transaction 72 which preceded T1. In other words, the LLA
guarantees than in any schedule S, the following conditions hold:
Condition I: (TI, dta,x], Q)Edep(S) implies that (Q, d[b,x], T)f dep(S), for any update
transaction T1, query Q, items a, b, node x.
Condition 2: (T I, d[a,x], Q)Edep(S) and action (T2, w, d[b,x]) precedes action
(TI, w, d[a,x]) at node x implies that (Q, d(b,x], T2)dep(S), for all update transactions TI,
T 2, query Q, items a,b, node x.

It is simple to check that the LLA does indeed force all schedules to satisfy these condi-
tions. For condition 1, (TI, d[a,xi, Q)Edep(S) means that S must be of the form

( .... (T1, w, dia,x) ...... (Q, r, dia,xI) ... .

This implies that T, must complete at x before Q does (or else Q would not get the d[a,x]
lock). If (Q, dlb,x], Ti)Edep(S), then we get the contradiction that Q completes at node x
before T, does. Therefore, (Q, d[b,x], TI) must not be in dep(S). The check for condition 2
is similar and is left as an exercise.

We can no show that the schedules produced by the CCA and LLA are consistent, and
thus, strong consistency queries can be processed locally. As a matter of fact, any query algo-
rithm that satisfies conditions 1 and 2 has this property. For example, the AA which processes
queries as if they were atomic operations also satisfies these conditions an is hence also strong
consistency insular.

Before presenting the following theorem, let us define a binary relation which will be use-
ful in the theorem's proof. Let binary relation "<<" be defined on the set of query and
update transactions of a schedule S as follows: T, << T2 iff all actions of T, precede all actions
of T2 in S. Notice that "<<" is a transitive and irreflexive relation. That is, T, << T2 and
T2 << T3 implies T, << T3, and T, << T, is false, for all transactions T, , T2 and T3.
Theorem 2: All schedules produced by the CCA and an insular query processing algorithm
which satisfies conditions I and 2 are consistent.
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ProoJ" Suppose that there is a cycle in the "<" relation for S. This cycle can have update
transactions or queries. Choose any update transaction (there must be one) and call it T1. Call
the other update transactions along the cycle T2, T3, T4 ..... T,,,. If a given update transaction
appears more than once, it simply gets two names. In particular, T, - T,,. Now take any pair
of update transactions T,, T,. There are two cases: (1) T, < T,+,. This implies that
T, << T,+I because the CCA is serial. (2) T, < Q < T,+ for some query Q. (There can
only be one query between T, and T,+ because queries cannot have dependencies). Here,
T, * T,,n because of condition I of the query algorithm. By condition 2, there is an action of
T, which precedes T,+,, so 7, << T,+I because the CCA is serial. Since for every pair 7,, T,+I
we have , << T,+, then we must have T, << T2 << ... << T,,. This, in turn, implies
that T, << 7,, (since "<<" is transitive) which is impossible because T, = 7',,. Therefore, all
schedules must be consistent.

The LLA is an efficient algorithm for processing strong (and weak) consistency queries.
In this section we illustrated how it could be used in conjunction with the CCA. However, the
LLA is not limited to the CCA; the LLA can be used with a large variety of update algorithms.
For example, in section 4.1.2 we will see how the LLA can be used with one more update algo-
rithm.

Before ending this section, let us point out that deadlocks can occur with the LLA. In
any situation where processes (i.e. transactions) compete for a finite set of resources (i.e. local
locks), deadlocks may arise. Fortunately, all possible deadlocks are local ones, and can be easily
detected by special processes running at each node. (A deadlock is local when all the resources
involved in a cycle of waiting processes are resources located at a single node.) Here we assume
that such deadlock detection processes do exist, and that they can successfully break deadlocks.
Furthermore, we assume that the local lock manager at each node is fair and does not allow a
transaction to wait indefinitely for a lock.

4.1.2 An Example: The Wait-for List Centralized Algorithm (WLCA).
In this section we will present an update algorithm which allows local queries to obtain a

consistent view of the data, but where the schedule of all transactions may be inconsistent.
The algorithm is the Wait-for List Centralized Algorithm (WLCA) (inspired by the centralized
locking algorithm with wait-for lists of [Garc79J).

The WLCA is similar to the CCA in that a central node executes all update transactions.
However, the central node does not wait for acknowledgements for the "perform update" mes-
sages before starting the next transaction. In order to prevent "perform update" messages
from being executed out of order, a "wait-for" list is appended to each message.

The central node computes a wait for list, WFL(T), for each transaction T it processes.
List WFL(T) contains the names of all transactions whose "perform update" messages must
be processed before the message of T in order to avoid conflicts. (The outline of the WLCA
which follows shows how the central node can compute these lists). A copy of wait-for list
WFL(T) is appended to each "perform update" message of T, and nodes will only process
these messages if they have processed all transactions in WFL (T) first.

We now give an outline of the WLCA. Array LAST is stored at the central node, and
LAST(i) is the name of the last transaction which referenced (read or write) item i. A list,
DONE(x), is kept at each node x. This list contains the names of transactions whose "per-
form update" messages have been processed at node x.
(I) An update transaction arrives at node x from a user. Node x assigns a name T to the

transaction. (The name could be, for example, a node identification number, followed by
the user name and a sequence number). Recall that we are assuming that all data is repli-
cated at all nodes in the system).
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(2) Node x forwards transaction T to the central node.
(3) When the central node receives T, it places it in a queue. Update transaction T waits in

the queue until its turn to be executed comes up.
(4) When T's turn comes up, it is executed at the central node. (At this point, all previous

update transactions have completed at the central node, but may still be active at other
nodes). The item values requested by T are read from the database at the central node,
any necessary computations are carried out, and the new values are stored in the local
database.

(5) For each item i referenced by T, the central node adds LAST(i) to WFL(T) and then
makes LAST(i) equal to the name T.

(6) "Perform update T" messages, which include copies of WFL(T) and T's name, are sent
out by the central node to all other nodes, giving them the new values that must be
stored at each site. The central node is done with T, and goes on to process the next
update transaction that is waiting in its queue. (See step 4).

(7) When a node x receives a "perform update T" message, it looks at WFL(T). If
WFL(T) is contained in DONE(x), then the message is processed (i.e., the values pro-
duced by T are stored locally) and the name T added to DONE(x). Otherwise, the mes-
sage is saved until the missing messages have been processed. No acknowledgements are
sent to the central node.
In order to describe an important property of the WLCA, let us define a binary relation

<<," on the set of all transactions of a schedule S, as follows: T<<,. if and only if all
actions of transaction T, precede all actions of transaction T at node y in schedule S. Notice
that " <<", like "<<", is transitive and irreflexive.

The important property of the WLCA is that if update transactions T, and T2 reference a
common item i, then either Tn<<, T2 at all nodes y, or T2<<, T, at all nodes y. To see why
this is true, suppose that T, is processed first at the central node, and say that transactions R1,
R2, . .. , R. also reference item i and are processed after T, but before T2. Then, T, will be
in WFL(R 1 ), R1 will be in WFL(R 2) .... and R,,, will be in WFL(T 2 ). As we can see in step
7 of the WLCA, if T, is in WFL(RI), then T<<,.R at all nodes y. Similarly, R<<,R2 ...
R,, << T2 at all nodes y, so T,<<, T2 at all nodes y by the transitive property of the relation.
If T2 is processed first at the central node, then T2<<, T, at all nodes y. As an immediate
consequence, if T,< T2 in any WLCA schedule, then T<< , T2 at all nodes y. In turn, this
property can be used to immediately show that all WLCA schedules are consistent. (By the
way, notice that saying that T, <<, T2 at all nodes y is not the same as saying that all actions of
T, precede all actions of T2 everywhere, or T<< T2 ).

Even though the WLCA has these properties, it turns out that not all schedules of update
transactions and queries performed locally are consistent. The following example illustrates
this. Consider two update transactions T, and T, in a system with two nodes x and y, and say
that x is the central node. Transaction T, simply updates item I without reading any data,
while T, similarly updates item 2. Thus,

To- ((T,, w, d[l,x]),(T,, w, d[l,y]))

Tq - ((T,, w, dll,xl),(T, w, d[2,yl))

Notice that these two transactions do not conflict because they reference different items. Thus,
the name T, will not be in WFL(T,) and the name T, will not be in WFL(T7,). This means
that the actions of T, and T, may occur in any order at node y.

Next, consider two queries which read items I and 2. One query, Q1 , is performed locally
at node x, while query Q2 is executed at node y. We can represent Q, and Q2 as

Q,- ((Ql, r, d[I,xI),(Q,, r, d2,x)) and

Q2 - ((Q2, r, djl,yl),(Q,, r, d2,y)).
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Now consider the following schedule of these four transactions:

S- ((T,, w, dL,xJ),
(Q 1, r, d[I,xD),(Q1, r, d42,x]),

(T,, w, d[2,x]),(rq, W, dl2,y]),

(Q2, r, d[l,y]),(Q2, r, d[2,yI),

(T,, w, d[1,y ) ).

Since the actions of T,, and T, may occur in any order at node y, schedule S is a legal schedule
as far as the WLCA is concerned. But notice that T,< QI< T,< Q2< T, (see definitions I and
3), so this schedule is not consistent (see theorem 1).

The fact that S is not consistent can be interpreted as follows: In S, Q, sees the effects of
T, but does not see the effects of T,, while Q2 sees the effects of Tq but not T. There is no
way that these four transactions can be executed one at a time (i.e., serially) and produce this
same effect. In any serial schedule, if Q, sees T, and Q2 follows Q1 in the schedule, then Q2
must also see T,,. This is not the case in S.

The example shows that the WLCA is not strong consistency insular. In other words,
there is no query algorithm which can process Q, and Q2 locally, without outside information,
and avoid inconsistent schedules. Notice that when Q, is processed at node x, T, has com-
pleted there and there is no way of knowing that T. will come later. Hence, any query algo-
rithm should allow Q, to be processed there. A similar statement can be made about Q2. Of
course, non-local query algorithms can avoid the problems. For example, if all queries are exe-
cuted at the central node (just like update transactions), then all schedules will be consistent.
(Such a query algorithm is not strong consistency insular because queries are not processed at
their originating node, even though the items requested have values there.)

Fortunately, the fact that our sample schedule S is not consistent does not mean that Q,
and Q2 do not see a consistent view of the data. If we eliminate Q2 from S, we observe that
the resulting schedule is consistent and equivalent to the serial schedule T,, Q1, T, (i.e., T,
executed first, then Q1, then T,). Thus, Q, sees a consistent database at node x. Similarly, if
we delete Q, actions from S, we find that Q2 sees the consistent data at node y produced by
serial schedule T., Q2, T,. In other words, both queries see a database produced by some
serial execution of the update transactions, but these serial executions may be different for each
query.

How critical is it that Q, and Q2 do not see "compatible" consistent views? If the users
who submitted Q, and Q2 communicate directly and compare their query results, then they
may be confused. But on the other hand, many users may be content with getting a consistent
view, especially if their weak consistency query can be processed faster than a strong con-
sistency query. Thus, schedule S may be considered a "good" schedule in some cases, even
though it is not consistent. (See section 2.)

The following theorem confirms the fact that weak consistency queries can indeed be pro-
cessed locally in conjunction with the WLCA. The query algorithm for weak consistency
queries can be the local locking algorithm, LLA (or any such algorithm which satisfies condi-
tions 1 and 2 of section 4. 1. ).
Theorem 4: In all schedules produced by the WLCA and LLA, queries get a consistent view of
the data.

Proof. Consider any such schedule S and any query Q in that schedule. Construct schedule S'
by eliminating from S all actions of queries other than Q. Since the eliminated queries had no
effect on the values read by Q, query Q reads the same values in both S and S'. We will show
that these values are consistent by showing that schedule S' is consistent.

Let x be the node where Q was executed, and assume that there is a cycle in the "<"
relation for S'. Assume that Q is in the cycle, and say the cycle is Q< T< T2< ... < T,,< Q.

S, ,
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Since T,< Q< TI, we know by conditions 1 and 2 that T, T, and an action of T. precedes an
action of Tt at node x. For each pair in the cycle T,< T, , we know that T<<, T+ 1 (property
of WCLA), so T,<<, T2<< , • • T,. (Recall that T,<<x T,I means that all actions of T, pre-
cede all actions of T,. 1 at node x.) This is turn means that T <<" T. (relation is transitive),
which contradicts the fact that an action of T, precedes an action of T, at x. If Q is not in the
cycle, then T1< T2< .< T < T, becomes T,<<, T2<<. • " • <<. TI, a contradiction too.
Hence, S' is consistent, and all queries read consistent data. (End of proof.)

4.1.3 An Example: The Timestamp Centralized Algerithm (TCA).
There are some update algorithms where strong or weak consistency insular queries can-

not be processed locally. The Timestamp Centralized Algorithm, TCA, which we will now
describe, is one of these. (This algorithm was inspired by a Majority Consensus Algorithm of
[Thom79|).

The TCA is similar to the WLCA, except that a different mechanism from wait-for lists is
used to execute the "perform update" messages. Let us assume that the central node has a
real time clock (which is never set back). In addition to this, each item value in the system has
a timestamp associated with it. The timestamp of value d U,xJ, is (d i,x1), represents the last
time when item i was modified at the central site, as far as node x can tell.

When a transaction T is executed at the central node, it is assigned a timestamp, is (T),
equal to the current time. All "perform update" messages for T carry a copy of ts(T). This
timestamp is used to detect if the execution of the "perform update T" message would
overwrite values which are more current than .he ones produced by T. The details are given in
the following outline of the TCA.
(I)-(4): Same steps as the WLCA.

(5) Transaction T is assigned a timestamp is (T) equal to the current time at the central node.

(6) "Perform update T" messages, which include a copy of ts (T), are sent out by the central
node to all other nodes, giving them the new values that must be stored at each site. The
central node is done with T, and goes on to process the next update transaction that is

waiting in its queue. (See step 4.)

(7) When a node x receives a "perform update T" message, it performs the following for
each "d[i,xJ- value" in the message: If ts(d[i,x]) is less than is(T) then replace the
value d~i,xi by the value given in the message; otherwise do nothing to dli,xi. No ack-
nowledgement is sent to the central node.
An interesting property of any schedule produced by the TCA is that T,< T, implies

is (1',) is less than is (T,) for all update transactions T, T,. (If both of the T,, T, actions which
cause the dependency are writes, then step 7 of the TCA guarantees that is (T,) is less than
ts(T). Otherwise, the actions must occur at the central site because all update transaction
reads occur there, and is(T,) should also be less than ts(T,).) This property can be used to
show that all TCA schedules for update transactions are consistent.

Even though the TCA schedules are consistent, the database at a node can be left incon-
sistent "between" update transactions. To see how this could happen, consider once more the
distributed database of figure 1 and transactions T, and T2 of section 3.2 (Tt:"deposit 5 dol-
lars", T2: "withdraw 10 dollars"). Let us assume that node I is the central node. Then the
events described in section 3.2 could occur under control of the TCA. That is, transaction T,
could be executed at time i, at node I and message MI (now with timestamp t i) could be sent
to node 2. (See figure 4). Similarly, message M 2, with timestamp r2, could also be sent to
node 2.

Suppose that M 2 arrives at node 2 before Mi. The new values for the items indicated in
M 2 would be stored (with timestamp t2), leaving the database at node 2 inconsistent: di depo-
sits, 21 - 105, dlwithdrawals, 21 - 40, d~balance, 21 - 65. (Recall that the consistency con-
straint is deposits - withdrawals - balance.) Any local query performed at node 2 after Al, has
been performed and before MI has arrived will read inconsistent data. No local query
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processing algorithm can avoid this because at node 2 there is no way to know whether there is
or there is not a missing "perform update" message.

Of course, when message M, (with timestamp tj) finally arrives at node 2, the local data-
bose will return to a consistent state. Notice that the "dlbalance, 21 - 65" part of M, (see
figure 4) will not be performed because the timestamp of M, is less than the timestamp of
value dlbalance. 21.

Thus, the TCA is neither strong nor weak consistency insular. Since the schedules of
updaw. transactions produced by the TCA are consistent, then strong and weak consistency
queries could be processed as if they were update transactions. Of course, such an algorithm
for queries would be non-local because queries would have to be forwarded to the central node.

4.1.4 An Example: The Distributed Locklng Algorithm (DLA).
In this section we present a latest-bound insular update algorithm. Recall that a latest-

bound query Q submitted at time f must see the effects of all update transactions that have
committed before time t. (This algorithm was inspired by Ellis' ring algorithm [Elli77]).

In the Distributed Locking Algorithm (DLA), each node in the system has a single update
lock. Before an update transaction T can be performed, it must request and obtain this update
lock from every single node in the system. Once transaction T has all locks, it knows that no
other transaction is updating, so T can be performed, releasing all locks upon its completion.
Of course, global deadlocks may occur when two transactions attempt to obtain the update
locks, but we will avoid this problem by assuming that there is a special program in the distri-
buted database which detects global deadlocks and orders update transactions to release their
locks.

The following is a brief description of the DLA, while figure 6 illustrates these steps.
(I) Update transaction T arrives node x from a user.
(2) Node x, on behalf of T, sends "request update lock" messages to all nodes in the system

(including one to itself).
(3) When a node .v receives a "request update lock" message from node x, it checks its lock.

If the lock is available, then a "lock granted" message is sent to x and the lock is marked
as given. If the lock has been given to some other transaction the lock request is placed
on a queue to wait for the release of the lock.

(4) When node x receives "lock granted" messages from every node (including itself), it
performs T. That is, the item values requested by T are read at node x, and necessary
computations are carried out, and the new values are stored locally. The update lock at
node x is then released.

(5) "Perform update T" messages are sent by node x to all other nodes giving them the new
values that must be stored at each site.

(6) Each node y that receives a "perform update T" message stores the new values into the
local database. The update lock at node y is released and any waiting lock request is
granted (see step 3).
In the DLA, an update transaction must complete all of its actions at every node before

the next transaction can be started. This means that transactions are executed serially, and
hence, the DLA produces consistent schedules for update transactions. This also means that a
query which is executed locally at node x will see the effects of all previous update transactions,
except possibly the one that is currently being executed. However, by examining the local
update lock at node x, it is possible to tell if indeed the query may miss the effects of the
currently executing update transaction. The reason for this is that no update transaction can
reach its commit point unless all update locks are held by it. (For the DLA, the commit point

of an update transaction is the time of its first write when the new values first become available
to queries). Thus, if the local update lock at node x is free, no update transactions are
currently being executed and any local query at node x will see the effects of all previously

g. --------------------



committed update transactions.
This discussion has given us an algorithm for processing latest-bound queries locally at a

node x. Say a latest-bound query Q arrives at node x at time r. Node x waits until its local
update lock becomes free and at that time starts processing Q. (The local update lock does not
have to be held during the processing of Q). This guarantees that Q will see the effects of all
update transactions which committed before time t.

The reason why the DLA permits local latest-bound query processing is that all nodes par-
ticipate in the "decision" to perform an update transaction. That is, all nodes must grant an
update lock to an update transaction before it can go ahead and commit. This implies that
every node must be aware of the fact that there is an update transaction in progress.

On the other hand, in may update algorithms the decision to perform an update transac-
tion is taken by a single node or by a subset of nodes. In these cases, nodes which do not par-
ticipate in the decision will be unable to process latest-bound queries locally because these
nodes will not know whether an update transaction is in progress. This is the case with the
CCA, WLCA and TCA algorithms. In all these algorithms, the central node decides what
update transactions to process. Thus, all nodes (except the central one) must process latest-
bound queries by either reading the data at the central site or by requesting a wait-for list or
timestamps from the central node. (In the second case, a wait-for list for the referenced items
or the current central node timestamps for the required items can be used to make sure that all
necessary updates are seen by the query).

4.2 Processilg Non-Insular Queries.
In the previous sections we presented several types of R insular update algorithms. In

those sections we assumed that all data was completely replicated, so that all queries became
insular queries. We now go back to the general case so we may discuss non-insular queries.

We have proposed a criterion for evaluating query algorithms according to the way in
which they process insular queries. We would also like to have a similar criterion for evaluating
query algorithms by the way they process non-insular queries. Unfortunately, in the non-
insular case it is not as easy to decide what constitutes a good algorithm. That is, one non-
insular algorithm may seem the best under certain circumstances, but another algorithm may be
superior under different circumstances. We will illustrate this with some examples. The update
algorithms we select for these examples are modified versions of the CCA, WLCA, TCA and
DLA.

The CCA, WLCA, TCA and DLA as stated in the previous sections, cannot be used in a
case where some nodes may not have values for all items. However, they can easily be
modified to handle the more general case. The resulting algorithms may not be very practical,
but they will help us to illustrate some ideas. In all algorithms, nodes should simply ignore any
parts of the "perform update" messages which do not apply. For example, if a node x receives
a "perform update" message indicating that the value of item i is now 10, and node x does not
have a value for item i, then x should ignore that part of the message. The only other neces-
sary modification to the algorithms is in reading data for transactions. In the CCA, when the
central node decides to execute a transaction T, the values needed by T may not be available
locally. Hence, the central node must send messages to other nodes requesting the values.
Since the central node executes transactions serially, this modification does not change the pro-
perties of the CCA. A similar modification can be used for the other algorithms. However,
care must be taken to preserve the basic properties of the algorithms. For example, in the
WLCA, when the central node reads a value for item i at node x, it must ensure that node x
has performed the modifications for transaction LAST(). Otherwise, T,< T, would not imply
that T, <<., Ti.

Since the modifications to the update algorithms did not alter the basic properties of the
algorithms, the modified algorithms still have the same properties with respect to insular
queries. We now look at non-insular query processing with these modified algorithms. We will
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use the same names for the modified update algorithms as for the original algorithms, since it
should be clear that we refer to the modified algorithms when discussing non-insular queries.

Consider a non-insular query Q in a system that uses an update algorithm like the TCA,
which is not weak consistency insular. Suppose that Q requires values located at nodes xj,
X. ... . IX.. If Q reads the values at those nodes, the values obtained at each node may be
inconsistent, and as a consequence, the collection of values read at nodes x1. ... .x, may also
be inconsistent. Thus, with the TCA, a non-insular weak (or strong) consistency queries can-
not be processed by simply going to the nodes which have the required data. As in the case of
insular queries, one solution is to process weak consistency queries as if they were update tran-
sactions. For the TCA, this involves processing queries at the central node. Depending on
how heavily loaded the central node is, the query algorithm may or may not be efficient.

Next, consider an update algorithm which is weak consistency insular like the WLCA.
Again, suppose that query Q requires values from nodes x1 .... x,,,. In this case, it would be
possible to get a consistent view at each of the m nodes, but the combination of these m con-
sistent views may be inconsistent. Thus, even though the WLCA is weak consistency insular,
non-insular weak consistency queries have the same problem as they had in the TCA.

However, in the case of the WLCA, there are two (or more) possible weak consistency
algorithms. The first solution is, as for the TCA, to process non-insular queries at the central
node. This algorithm could be used for weak as well as strong consistency queries. The second
solution is to read a set of consistent views at the required nodes, and then to make these views
consistent among themselves. As we will see, this algorithm avoids communication with the
central node (unless data must be read there).

We now give a brief outline of this query algorithm which does not communicate with the
central node. Let us call this algorithm the Synchronized Local Locking Algorithm (SLLA).
The algorithm is presented for the case of a query which spans two nodes only. The extension
for general non-insular queries should be straightforward.
(1) Query Q needs to read item values at nodes x and y.
(2) Query Q uses the LLA to obtain a consistent view of the data at node x. These values

are saved in DATA(x). Before releasing the local locks, Q copies the list of performed
update transactions, DONE(x), into VIEW(x). A special procedure to collect all "per-
form update" messages that are performed at node x in the future is started. (The rea-
son for this will become apparent later). Then the local locks at x are released.

(3) Query Q waits at node y until all "perform update" messages for transactions in
VIEW(x) have been performed at node y. (That is, until VIEW(x) is a subset of
DONE(y)). Then Q uses the LLA to obtain a consistent view of the data at node y.
These values are saved in DATA(y). The list DONE(y) is copied into VIEW(v) and the
local locks are released.

(4) Back at node x, query Q compares the transactions seen at node y, VIEW(y), with the
transactions seen at node x, VIEWUA. Query Q waits until the "perform update" mes-
sages for all transactions in VIEW(y) but not in VIEW(x) have been performed at node
x. At this point, the "perform update" messages for transactions missed by Q at node x,
i.e., VIEW(y) - VIEW(x), have been saved at node x. Hence, Q can simply perform the
missing messages on the data read originally, DATA(x). Of course, no message for tran-
sactions not in VIEW(y) should'be performed. The messages that are performed on
DATA(x), are performed in the same order as they were performed at node x.

We will not prove that the SLLA gives non-insular queries a consistent view, but we will
present an intuitive argument. At node y, query Q is performed with the LLA and gets a con-
sistent view of the data. That is, Q observes the database as if the transactions in VIEW(y)
had been performed serially. If we let TI, T2 ..... T,, be the names of the update transaction
in VIEW(y), then the effect on Q at node y is as if the serial schedule (T T2 . . 7" Q) had
been performed. (That is, T, performed completely, then T2, and so on). At node x, Q also
sees the effect of T,, T'2. T, but possibly in a different order. However, transactions T,
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and T, can only be observed in a different order at nodes x and y if they have no items in
common. Therefore, in the schedule observed at node x, we may switch any pair of transac-
tions whose order does not coincide with the order in (TI ... T. Q). So Q observes the same
consistent state at both nodes x and y, and the combined values read at nodes x and y must be
consistent.

We now have the problem of deciding whether the SLLA or the central node algorithm is
superior for weak consistency queries in the WLCA environment. The central node algorithm
(where queries are processed like update transactions) has the disadvantage that the central
node can become a bottleneck. On the other hand, the SLLA avoids this problem, but at the
cost of synchronizing different consistent views. This overhead involves re-visiting nodes after
reading data and delays for missing "perform update" messages (which are also possible with
the other algorithm). If the central node is not heavily loaded, probably the central node algo-
rithm would be a better choice, while the SLLA would be superior is the high load case. Also
notice that the SLLA cannot process strong consistency queries, but the central node algorithm
can.

To end our discussion of weak and strong consistency non-insular queries, let us briefly
look at the CCA. Even though this is a strong consistency insular algorithm, non-insular
queries cannot simply read the required values without any inter-node synchronization. Like
with the WLCA, with the CCA there are several alternatives for processing non-insular queries.
One alternative is to process the queries at the central node. Another alternative is to read
several consistent views and to combine them into a single consistent view, like in the SLLA.
A third alternative is to delay update processing so that a query may observe the same con-
sistent state at several nodes. Recall that update transaction processing can be halted in the
CCA by not acknowledging a "perform update" message.

Still another alternative is to use the local locking algorithm (LLA) at each node, but only
releasing the locks until all values at all nodes have been read by the query. Such an algorithm
guarantees that whenever a query Q sees the effects of an update transaction TI, then (1) T,
sees the complete effects of 7, at any node, and (2) Q also sees the complete effects of any
update transaction T2 which preceded T, anywhere in the system. (These conditions are similar
to those of section 4.1.1.) Hence, this algorithm, like the other three we discussed for the
CCA, guarantees that all schedules of queries and update transactions are consistent. Unfor-
tunately, this last query algorithm is prone to global deadlocks as queries and update transac-
tions compete for the local locks. (In the LLA for insular queries, only local deadlocks could
occur).

Thus, the choice of a good query algorithm for non-insular queries in the CCA is just as
hard as with the WLCA. Which CCA query algorithm performs better will depend on factors
such as the load at the central node, the cost of detecting and correcting and global deadlocks,
and the cost of delaying update transactions.

Processing latest-bound non-insular queries is considerably simpler than processing weak
or strong consistency non-insular queries. The reason for this is that a latest-bound query Q
which spans data at nodes xI ,x 2 . . . . . ,,, can be decomposed into a set of it independent insu-
lar queries at nodes x1 ,x2 x...,xH. That is, as long as each of the sub-queries observes all
update transactions which committed before Q's submission time, then the combined data pro-
duced by the sub-queries will reflect all update transactions which committed before Q's sub-
mission time this means that the algorithm for processing non-insular latest-bound queries can
simply be a collection of calls to the latest-bound insular algorithm.

4.3 Pveesing t-vhltae and t-bound Queres.
In this section we will discuss the processing of i-vintage and t-bound queries. We start

by pointing out that if any type of i-vintage or t-bound queries are to be processed, then a his-
tory of the distributed database must somehow be kept by the system. This history must record
the various states the distributed database went through to arrive at the current state.
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In the algorithms we have presented so far, the "old" values of an item were never saved
before replacing them with new values. Thus, it is impossible to find out what the distributed
database looked like at a given time or at what times the previous update transactions commit-
ted. No t-bound or t-vintage queries can be performed with these algorithms as stated.

In the update algorithms that do keep a history, there are several alternatives for doing so.
Probably the simplest and most efficient alternative would be to keep a log of all the update
transactions. A transaction log is a record of all the transactions and the modifications they per-
formed. Typical entries for update transaction T in the log would be T's commit time, T's
name, the new item values produced by T, and the old values they replaced. A t-vintage or t-
bound query can be processed by examining the log in reverse chronological order until the
desired data is reconstructed. Since these queries must examine the log, /-vintage and f-bound
queries can only be executed at nodes which have a copy of the log. One important advantage
of the transaction log mechanism is that in many systems the log is required anyway for crash
recovery and update transaction undoing [Gray77]. Thus, in these systems, keeping the log for
t-vintage and t-bound queries represents no real overhead.

A second alternative for keeping a history of the distributed database is to keep a log for
each item value in the system. Each of these logs records the previous values of an item at a
node and the times when the values changed [Reed78I. A f-vintage of t-bound query can be
processed by examining the logs for all the items referenced by the query. This can be done at
a single node as long as all the required logs are found there.

Due to space limitations, we will not discuss here how either type of log can be main-
tained and how the t-vintage and t-bound queries can be processed using the logs.

5. CONCLUSIONS.

In this paper we studied the various requirements that read-only transactions or queries
can make. The requirements can be strong consistency, weak consistency, i-vintage, i-bound
or latest-bound. We also discussed how queries can be processed efficiently in a distributed
database. The criterion of R insularity, that is, whether a query with a requirement R can be
processed locally, was used to characterize both query and update transaction algorithms.

Several update and query algorithms were presented as examples. These examples were
intended to illustrate the issues involved in query processing, and care must be taken not to
over generalize. For example, one cannot say that only update algorithms which produce serial
schedules (like the CCA) can be strong consistency insular. Similarly, we cannot conclude that
any update algorithm which uses timestamps will not be weak consistency insular. The R insu-
larity property is a property of the update and query algorithms, and not of a particular
approach.

In any distributed database where queries are expected to be a significant fraction of the
total transactions, the expected requirements of the queries should be studied and considered in
the design of the update and query algorithms. The R insularity properties of the proposed
algorithms should be analyzed to see if the algorithms are appropriate. For most applications, it
is not a good idea to design the most efficient or most elegant update algorithm without keeping
in mind queries and their requirements.

It is also important to notice that in some cases a minor change of the update algorithm
can drastically change its R insularity properties. For example, in both the TCA and the
WLCA algorithms, the central node can add a sequence number to all update transactions pro-
cessed. The sequence numbers can then be appended to the "perform update" messages, and
the query algorithms can use this extra information to process weak consistency and even
strong consistency queries. Thus, the modified TCA and WLCA become strong consistency
insular algorithms. But of course, in algorithms where there is no central node to assign
sequence numbers, it may not be as easy to obtain the necessary information to change the R
insularity properties.
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In closing, let us point out that the ideas presented in this paper could also be applied to
centralized databases. In a centralized database queries can have the same requirements that we
have discussed here. However, in a centralized database system (when all queries are insular)
it is fairly easy to design R insular query algorithms for any requirement R because all neces-
sary information is located in the one node.
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